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Abstract—In this paper, the fixed-time leader-follower axial
alignment tracking problem for a group of cooperative agents is
investigated. The leader is dynamic and only transmits its position
and velocity to its neighbors. A fixed-time algorithm is proposed
to solve the consensus tracking problem. Each follower estimates
the leader state in a fixed-time using distributed observers. To
solve the consensus problem, based on the leader estimate, the
followers collectively align their positions with the leader position
in a fixed-time which does not depend on the initial positions.
The experimental results show the effectiveness and robustness
of the proposed fixed-time leader-follower consensus algorithm
even in the presence of physical limitations such as packet loss,
information delay, etc.

Index Terms—multiple mobile robots, fixed-time stability,
leader-follower consensus, distributed observer, ROS(Robot Op-
erating System)

I. INTRODUCTION

In recent years, many works on multiple robots have been
done in many areas, e.g. formation control [1], [2], target
tracking [3], [4], optimal coverage [5], distributed monitoring
[6], [7], flocking [8], swarming [9], rendezvous [10], etc.
Compare with a single robot, multiple robots may perform a
mission more efficiently and provide higher flexibility during
the task execution. One of the fundamental problems on
multiple robots is consensus [11] to guarantee agreement
from all agents regarding a certain quantity of interest via
local interaction. In such missions, it is important to achieve
coordination between robots without require their initial
configurations [12].

The convergence rate analysis becomes an interesting re-
search topic in the area of stabilization and leader following
consensus [11]. In fact, the convergence rate is a signifi-
cant performance index to validate the effectiveness of the
control algorithms. Most of the existing results in leader
following consensus concentrate on asymptotic [13] or finite-
time convergence [14]. When the convergence is asymptotic,
the tracking errors converge to zero when time approaches
to infinity. For finite-time convergence, the tracking errors
converge to zero in a finite time, but the settling time often
depends on the initial conditions. Fixed-time stability has been
proposed to define control algorithms which guarantee that
the settling time is upper bounded regardless to the initial
conditions [15]. Based on the sliding mode theory [16], some
nonlinear switching controllers have been proposed to ensure
fixed-time convergence [12].

In [12], the leader-follower consensus problem for nonholo-
nomic mobile robots have been discussed. The convergence of
the tracking errors is achieved in a finite time which does not
depend on the initial conditions. In [17], a new method was
proposed to design a tracking controller for one nonholonomic
mobile robot such that the tracking errors converge to zero for
any arbitrary initial tracking error in a fixed-time. For discrete
time system, a decentralized model predictive protocol which
uses the difference between two consecutive inputs is derived
such that the consensus problem for multiple mobile robots is
achieved [18] .

In this paper, we consider the fixed-time leader-follower ax-
ial alignment tracking problem for group of cooperative robots
with double-integrator dynamics. Each follower estimates the
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leader state in a fixed-time using distributed observers. To
solve the consensus problem, based on the leader estimate, a
fixed-time controller is derived. Using the proposed controller,
an upper bound of the settling time is provided regardless
of initial conditions. Thereby, a decentralized observer-based
control protocol is proposed for each agent to solve the leader-
follower alignment problem in a fixed-time.

The paper is organized as follows. In Section II, the fixed-
time concepts and graph theory are briefly reviewed. In Section
III, the problem statement is formulated. In Section IV, the
controller design which solves the fixed-time leader-follower
axial alignment tracking problem is discussed for double
integrator MAS. In section V, the experimental validation in
real time using minilab robots and gazebo is presented. Finally,
conclusions are given in section VI.

II. RECALLS ON FIXED-TIME STABILITY

Let us consider system{
ẋ(t) = F (t, x(t))
x(0) = x0,

(1)

where x ∈ Rn is the state, F : R+×Rn → Rn is a nonlinear
function and F (t, 0) = 0 for t > 0. The solutions of (1) are
understood in the Filippov sense [19].

Definition 1: [20] The origin of system (1) is a globally
finite-time equilibrium if there is a function T : Rn → R+

such that for all x0 ∈ Rn, the solution x(t, x0) of system
(1) is defined and x(t, x0) ∈ Rn for t ∈ [0, T (x0)) and
limt→T (x0) x(t, x0) = 0. T (x0) is called the settling time
function.

Definition 2: [15] The origin of system (1) is a globally
fixed-time equilibrium if it is globally finite-time stable and the
settling time function T (x0) is bounded by a positive number
Tmax > 0, i.e. T (x0) ≤ Tmax, ∀x0 ∈ Rn

Lemma 1: [15] Assume that there exists a continuously
differentiable positive definite and radially unbounded function
V : Rn → R+ such that

V̇ (x) ≤ −αV p(x)− βV q(x) (2)

with α > 0, β > 0, 0 < p < 1 and q > 1. Then, the origin
of system (1) is globally fixed-time stable with settling time
estimate

T (x0) ≤ Tmax =
1

α(1− p)
+

1

β(q − 1)
(3)

Remark 1: [21] If p = 1− 1
µ and q = 1+ 1

µ with µ ≥ 1, the
settling time can be estimated by a less conservative bound:

T (x0) ≤ Tmax =
πµ

2
√
αβ

(4)

A. Graph Theory

Let us consider a group of N + 1 robots with one leader
and N followers. Among the N followers, the communication
topology can be represented by graph G = {V, E} where
V = {1, . . . , N} defines the set of nodes, corresponding to
the followers, and E ⊆ {V × V} defines the edge set. A link
(j, i) ∈ E , with i 6= j, exists if agent i receives information
from its neighbor j. The adjacency matrix A = (aij) ∈ RN×N
satisfies aij > 0 if (j, i) ∈ E and aij = 0, otherwise. The cor-
responding Laplacian matrix is given by L = (lij) ∈ RN×N
with lii =

∑N
j=1, j 6=i aij and lij = −aij for i 6= j. The

links between the leader and the followers are characterized
by matrix B = diag(b1, . . . , bN ) where bi > 0 if the leader
state is available to follower i and where bi = 0 otherwise.

In this paper, it is assumed that the communication topology
among the N followers is undirected. It means that the
adjacency matrix A is symmetric.

III. PROBLEM STATEMENT

Consider a multi-agent system consisting of a leader (which
could be virtual) labeled by 0, and N followers, labeled by
i ∈ {1, . . . , N}. Here, we consider holonomic mobile robots
moving in a two-dimensional plane. The axes of the workspace
are shown in Fig. 1. Since we assume that motions along
the x and y-axes are decoupled, the system dynamics can be
modeled as

ẋ1,i(t) = x2,i(t)
ẋ2,i(t) = ux,i(t)
ẏ1,i(t) = y2,i(t)
ẏ2,i(t) = uy,i(t)

(5)

where x1,i(t) ∈ R and y1,i(t) ∈ R are the position,
x2,i(t) ∈ R and y2,i(t) ∈ R are the velocity, ux,i(t) ∈ R
and uy,i(t) ∈ R are the control inputs along the x-axis and
y-axis, respectively.

Fig. 1. Top view of the considered mobile robot.

Remark 2: In the following, let us only consider the
dynamics along the x-direction.

The leader dynamics is given by the following double-
integrator system {

ẋ1,0(t) = x2,0(t)
ẋ2,0(t) = ux,0(t)

(6)
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where x0 = [x1,0, x2,0]
T ∈ R2 (resp. ux,0 ∈ R) is the

leader state (resp. leader control input) along the x-axis. The
dynamics of the ith follower is as follows{

ẋ1,i(t) = x2,i(t)
ẋ2,i(t) = ux,i(t) + di(t)

(7)

where xi = [x1,i, x2,i]
T ∈ R2 (resp. ux,i ∈ R) is the

state (resp. control input) of the ith follower. The unknown
perturbation of the ith agent is given by di ∈ R.

Fig. 2. Illustration of the fixed-time axial alignment tracking problem.

Fig. 2 provides an illustration of the fixed-time consensus
tracking problem where only the dynamics along the x-
direction are considered. To solve this problem, the following
assumptions are made.

Assumption 1: It is assumed that the communication topol-
ogy among the N followers is undirected, fixed and connected.
It means that the adjacency matrix A is symmetric. It is also
assumed that there is at least one strictly positive parameter
bi.

Assumption 2: The followers do not known the leader
control input. Nevertheless, each neighboring agent knows its
upper bounds ux,0, defined as follows

|ux,0(t)| ≤ umax0 (8)

with umaxi ∈ R+.
Assumption 3: For each follower, the perturbation di(t) is

unknown but it is bounded as follows

|di(t)| ≤ dmaxi (9)

with dmaxi ∈ R+.

IV. FIXED-TIME AXIAL ALIGNMENT TRACKING FOR
AGENTS WITH DOUBLE-INTEGRATOR DYNAMICS

A. Fixed-time Observer

To estimate the leader state in a prescribed time, distributed
observers are designed for each follower i ∈ {1, . . . , N}.

Indeed, the leader state is only available to its neighboring
followers. Let us introduce the following observer as follows

˙̂x1,i = x̂2,i

+ρ1 sign
(∑N

j=1 aij(x̂1,j − x̂1,i) + bi(x1,0 − x̂1,i)
)

+σ1

⌈∑N
j=1 aij(x̂1,j − x̂1,i) + bi(x1,0 − x̂1,i)

⌋2
˙̂x2,i = ρ2 sign

(∑N
j=1 aij(x̂2,j − x̂2,i) + bi(x2,0 − x̂2,i)

)
+σ2

⌈∑N
j=1 aij(x̂2,j − x̂2,i) + bi(x2,0 − x̂2,i)

⌋2
(10)

where x̂k,i (k = {1, 2}) is the estimation of the leader state
xk,0 for the ith follower, ρk and σk are positive constants,
which will be given hereafter.

The fixed-time stabilization of the estimation errors

x̃k,i = x̂k,i − xk,0 (i = {1, . . . , N}, k = {1, 2}) (11)

is introduced in the following theorem.
Theorem 1: Suppose that Assumptions 1-2 are satisfied. If

the gains of the distributed observer (10) verify
σk = ε

√
N

(2λmin(L+B))
3
2
,∀k = 1, 2

ρ1 = ε
√

λmax(L+B)
2λmin(L+B)

ρ2 = umax0 + ε
√

λmax(L+B)
2λmin(L+B)

(12)

with ε > 0, then, for any initial condition, the estimation errors
(11) converge to zero. An upper bound of the convergence time
can be given as

To =
2π

ε
(13)

Proof. Using (10), the dynamics of the observation error is
given by

˙̃x1,i = x̃2,i + ρ1 sign
(∑N

j=1 aij(x̃1,j − x̃1,i)− bix̃1,i
)

+σ1

⌈∑N
j=1 aij(x̃1,j − x̃1,i)− bix̃1,i

⌋2
˙̃x2,i = ρ2 sign

(∑N
j=1 aij(x̃2,j − x̃2,i)− bix̃2,i

)
+σ2

⌈∑N
j=1 aij(x̃2,j − x̃2,i)− bix̃2,i

⌋2
− ux,0

(14)
Let us denote

x̃k = [x̃k,1, . . . , x̃k,N ]
T (15)

Then, for x̃1 and x̃2, one can obtain

˙̃x1 = x̃2 − ρ1 sign ((L+B)x̃1)− σ1 d(L+B)x̃1c2 (16)
˙̃x2 = −ρ2 sign ((L+B)x̃2)− σ2 d(L+B)x̃2c2 − 1ux,0(17)

We complete the proof by two steps.
• Let us consider system (17). Consider the candidate Lya-

punov function for subsystem (17): V1 = 1
2 x̃

T
2 (L+B)x̃2.

Its time derivative along (18) is given by

V̇1 ≤ −εV
1
2
1 − εV

3
2
1

Using Lemma 1, one can prove that x̃2 converges to zero
in a finite-time bounded by π

ε .
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• After x̃2 converges to zero (i.e. when t ≥ π
ε ), the

dynamics of x̃1 becomes

˙̃x1 = −ρ1 sign ((L+B)x̃1)− σ1 d(L+B)x̃1c2 (18)

Similarly to the previous step, the x̃1 dynamics converges
to zero. Indeed, consider the candidate Lyapunov function
for system (18): V2 = 1

2 x̃
T
1 (L+B)x̃1. Its time derivative

along (18) is given by

V̇2 ≤ −εV
1
2
2 − εV

3
2
2

Hence, one can conclude that x̃1 converges to zero and
after that x̃2 converges to zero in a finite-time bounded
by 2πε .

Hence, one can conclude that the estimation errors (11)
converge to zero in a fixed-time bounded by To.

B. Fixed-time Axial Alignment Tracking Controller

From Theorem 1, one can conclude that x̂i = [x̂1,i, x̂2,i]
T =

x0 for all t ≥ To. Hence, after time To, each follower is able
to indirectly access to the state of the leader and uses the
estimate x̂i in the consensus protocol.

Let us denote the tracking errors as follows (i = {1, 2}, k =
{1, 2})

ek,i = xk,i − x̂k,i = xk,i − xk,0 − x̃k,i (19)

From (6)-(7) and using Theorem 1, for each follower i =
{1, . . . , N} and for all t ≥ To, the tracking error dynamics
becomes

ė1,i = e2,i
ė2,i = ux,i + di − ux,0

(20)

It is clear that (20) is a second-order system. To deal with the
observer-based alignment tracking problem, for each follower
i = {1, . . . , N}, the control objective is to design ux,i such
that the origin of system (20) is fixed-time stable with the
settling time estimate T in spite of the presence of matched
perturbations.

Theorem 2: Let us consider the leader-follower system
(6)-(7). Suppose that Assumptions 1-3 are satisfied and the
gains of the distributed observer (10) verify (12). The leader-
follower axial alignment problem is solved in a fixed-time
using the decentralized controllers

ui,x =

{
0, ∀t < To

−α1+3β1e
2
1,i+2ai

2
sign (si)− bα2si + β2bsie3e

1
2 , t ≥ To

(21)
with the sliding surface

si = e2,i + bbe2,ie2 + α1e1,i + β1be1,ie3e
1
2 (22)

where α1, α2, β1 and β2 are positive constants, ai is a positive
constant given hereafter. The settling time is explicitly defined
as

T = To +
2√
α2

+
2√
β2

+
2
√
2√
α1

+
2
√
2√
β1

(23)

Proof. We complete the proof by two steps.

• Following [15], let us consider the candidate Lyapunov
function V3 = |si|. Its derivative is,

V̇3 = ė2,i sign (si)+
|e2,i|ė2,i sign (si) +

α1+3β1e
2
1,i

2
e2,i sign (si)

|be2,ie2 + α1e1,i + β1be1,ie3|
1
2

(24)

Setting
ai ≥ dmaxi + umax0 (25)

one can conclude that

V̇3 ≤ −(α2V3 + β2V
3
3 )

1
2 (26)

From Lemma 1, it is clear that si = 0 when t ≥ To +
2√
α2

+ 2√
β2

.
• The sliding dynamics (si = 0) can be expressed as

ė1,i = −
⌊α1e1,i + β1be1,ie3

2

⌉ 1
2

(27)

Using the candidate Lyapunov function V4 = |e1,i|, one
can obtain

V̇4 = −(α1

2
V4 +

β1
2
V 3
4 )

1
2 (28)

It is clear using Lemma 1 that e1,i = 0 when t ≥ Ts.
Furthermore, since e1,i = 0 and si = 0, then e2,i = 0.

This concludes the proof.

V. EXPERIMENTAL VALIDATION

A. Experimental Platform

This section briefly introduces the experimental platform
Minilab Robot, available at LAMIH, UPHF. The experiments
were performed on a group of mobile robots supplied by
Enova Robotics to test and validate the effectiveness of the
theoretical results given in the previous section. Fig. 3 shows
the architecture of the experimental platform used in an
indoor environment. In this process, control algorithms are
programmed using ROS (Robotic Operating System) with
Gazebo-ROS as a reality virtual simulation.

Fig. 3. Illustration of the experimental setup.

Generally, in ROS environment, we can perform simulation
for several robots using only one workstation. Instead of using
multiple workstations, in the following we introduce the idea
of gazebo simulator into real robots to reduce cost due to
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the use of several workstations. Since we are working on
the consensus problem for MAS using only one workstation,
we need to appropriately select the wifi configuration and
design multiple master ROS in a decentralized architecture
for multiple robots [22].

B. Implementation of Fixed-time Axial Alignment Tracking
Controller on Minilab Platform

Fig. 4 shows the communication topology for the leader-
follower MAS scenario in ROS-Gazebo. A MAS with N =
6 followers labeled by 1 − 6 and one leader labeled by 0
is considered. One can see that the communication topology
is fixed and connected. It is characterized by the following
Laplacian L and the matrix B which describes links between
the leader and the followers given as follows

L =


2 −1 −1 0 0 0
−1 1 0 0 0 0
−1 0 2 −1 0 0
0 0 −1 1 0 0
0 0 0 0 1 −1
0 0 0 0 −1 1



B =


1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0


From matrix B, it is clear that agents 2, 3, 4 and 6 do not
have direct link with agent 0. Assumption 1 is satisfied.

Fig. 4. Topology of MAS using ROS.

C. Experimental Results
1) Fixed-time Trajectory Tracking: Let us first only con-

sider one leader and one follower. For this scenario, the
control objective is reduced as a fixed-time trajectory tracking
problem, i.e. system (7) follows the desired trajectory xd = x0.

The initial state of the robot is x = [x1 = −1.5, x2 =
0]T ∈ R2. The settling time is set as T = 3.05s. The desired
trajectory is generated by (6) with x0 = xd(0) = 0, u0 =
ud = 0.2.

Using Theorem 2, the tracking controller (21) guarantees
the stabilization of the tracking errors to the origin in a finite-
time bounded by T = 3.05s. Fig. 5(a) shows that the actual

state trajectory x accurately tracks the desired state xd at 1.2s
for the first state and from Fig. 5(b) for the second state at
1.25s. Hence, the origin of the closed-loop system is globally
finite-time stable. Furthermore, since T does not depend on the
initial states, the proposed protocol is a fixed-time controller.
Fig. 5(c) shows the control inputs for linear x acceleration.

(a) (b)

(c)

Fig. 5. Experimental results for the fixed-time trajectory tracking problem:
Time response of actual state trajectory x and desired state trajectory xd with
constant linear desired control input.

2) Fixed-time Axial Alignment: The control objective is that
the six followers (7), track the leader (6) in a fixed-time using
only local exchanged information.

The initial position of the robots is given by the following
vector x(0) = [3, 2, 1,−1,−2,−3]T where the initial velocity
is zero. Recall that To is the time needed for an agent to
estimate the leader state (prescribed time observation). It
should be noted that the estimation in (13) depends on the
gains of observer. The settling time is explicitly defined as
T = To +

2√
α2

+ 2√
β2

+ 2
√
2√
α1

+ 2
√
2√
β1

.
The control parameter are selected as: α1 = α2 = β1 =

β2 = 10 for controller (21).
The desired trajectory for the leader is generated by (6)

with x1,0(0) = 0, x2,0(t) = 0.2. Hence, we set a = 1.

Using Theorem 1, the distributed observer (10) guarantees
the stabilization of the estimation errors to the origin in a
finite-time bounded by To = 1s. The distributed observers
accurately reconstruct the leader state for each robot before
To. Using Theorem 2, the consensus controller guarantees
the stabilization of the errors to the origin in a finite-time
bounded by T = 6.55s. Fig. 6 shows that the actual state
trajectory accurately tracks the leader state before T in spite of
the presence of disturbances and uncertainties inherent to the
experimental setup. One can conclude that using the proposed
controller, the leader-follower axial alignment is achieved
in a prescribed time. The origin of the closed-loop system
is globally finite-time stable contrary to existing controllers
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which only provide semi-global finite-time stability property.
Furthermore, since T does not depend on the initial states of
robots, the proposed protocol is distributed.

(a)

(b)

Fig. 6. Experimental results: Time response of the actual state trajectory of
the followers and of the leader

VI. CONCLUSION AND FUTURE WORK

We have investigated the fixed-time leader-follower axial
alignment tracking problem for a group of cooperative agents.
Distributed observers have been designed to estimate the
leader state. Some sufficient conditions have been established
for the observer and controller gains in terms of graph connec-
tivity to achieve consensus. The effectiveness of the theoretical
results has been validated through experimental results. For the
future work, implementation on nonholonomic unicycle-type
model will be considered.
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